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Abstract
We conjecture that the free-fermion part of the eigenspectrum observed recently
for the SUq(N) Perk–Schultz spin chain Hamiltonian in a finite lattice with
q = exp(iπ(N − 1)/N) is a consequence of the existence of a special simple
eigenvalue for the transfer matrix of the auxiliary inhomogeneous SUq(N − 1)

vertex model which appears in the nested Bethe ansatz approach. We prove
that this conjecture is valid for the case of the SUq(3) spin chain with periodic
boundary condition. In this case we obtain a formula for the components of the
eigenvector of the auxiliary inhomogeneous 6-vertex model (q = exp(2iπ/3)),
which permits us to find one by one all components of this eigenvector
and consequently to find the eigenvectors of the free-fermion part of the
eigenspectrum of the SUq(3) spin chain. Similarly, as in the known case
of the SUq(2) case at q = exp(i2π/3) our numerical and analytical studies
induce some conjectures for special rates of correlation functions.

PACS numbers: 75.10.Pq, 02.10.Ab, 05.50.+q

1. Introduction

It was found very recently that part of the eigenspectrum of some quantum spin models is
given by a sum of free-fermion quasienergies [1, 2]. In particular, the ground state energy of
the SUq(N) invariant Perk–Schultz Hamiltonian

Hq =
L−1∑
j=1

Hj,j+1 (1)

where

Hi,j = −
N−1∑
a=0

N−1∑
b=a+1

(
Eab

i Eba
j + Eba

i Eab
j − qEaa

i Ebb
j − 1/qEbb

i Eaa
j

)
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and Eab are N × N matrices with elements (Eab)cd = δa
c δ

b
d , is given by

E0 = 1 + 2(1 − L + n) cos
( π

N

)
− sin π(2n + 1)/2L

sin π/2L
(2)

for the special value of the deformation parameter

q = exp

(
iπ(N − 1)

N

)
. (3)

The lattice size defining the quantum chain is L and the parameter n in (2) is given by the
integer part of L/N .

Besides the ground state energy (2) for the SUq(N) model the SUq(N −1) quantum chain
with the same special value of the anisotropy (3) has a ground state energy given by a quite
simple formula

Ẽ0 = −2(L − 1) cos
( π

N

)
. (4)

It is also important to mention that at the special anisotropy (3) the SUq(N) model
exhibits many eigenenergies that can be expressed as the sum of free-fermion quasienergies.
In contrast, at the anisotropy (3) the SUq(N − 1) model exhibits a single energy level on
this class, namely the ground state whose energy is given in (4). Actually this last eigenstate
can be considered as a special state of the SUq(N) model in the sector where only (N − 1)

classes of particles are present (see conjecture 3 of [2]). We intend to show in this paper that
the corresponding wavefunction possesses nice combinatorial properties and its components
play a very important role in the nested Bethe ansatz approach being used for the construction
of all other free-fermion eigenstates. This comes from the fact that using the nested Bethe
ansatz (NBA) method for the SUq(N) invariant Hamiltonian (1) we obtain (see, e.g., [3])
an auxiliary transfer matrix of the inhomogeneous SUq(N − 1) invariant vertex model. We
conjecture that this matrix has a unique factorizable eigenvalue that reduces some of the NBA
equations to a very simple form leading to the free-fermion-like structure. As a result we obtain
the free-fermion part of the eigenspectrum of the Hamiltonian (1). All related eigenvectors
can be found from the knowledge of this unique eigenvector of the transfer matrix of the
inhomogeneous SUq(N − 1) vertex model. In the homogeneous case the transfer matrix
commutes with the SUq(N − 1) invariant Hamiltonian and this special eigenvector reduces to
the ground state eigenvector with energy (4).

As far as a periodic boundary case is concerned, we have found the free-fermion spectrum
only for the SU(3) Perk–Schultz model with q = exp(2iπ/3) (we do not consider here the
free-fermion point of the SU(2) model, or equivalently the standard XY spin chain). We
show below that the free-fermion part of the eigenspectrum of the SU(3) model with periodic
boundary condition can be explained by the existence of a unique factorizable eigenvalue for
the transfer matrix of the inhomogeneous 6-vertex model with q = exp(2iπ/3). We prove the
existence of this eigenvalue using different methods described in [2, 4]. Comparison of these
approaches sheds a new light on recently discovered combinatorial properties of the ground
state wavefunction for the odd length XXZ spin model with � = −1/2 [5–7] (see also [8] for
similar results for the XYZ spin chain).

2. The SUq(N ) invariant model

The Hamiltonian (1) defines a special dynamics of localized quantum SU(N) spins on a one-
dimensional lattice [9, 10]. Identifying the possible values of the localized spins as distinct
classes of particles the Hamiltonian (1) describes the fluctuations of a system containing N
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classes of particles (0, 1, . . . , N − 1), with a restriction of single occupancy at each lattice
site. The number of particles belonging to each class is conserved separately. Consequently
we can separate the Hilbert space into block disjoint sectors labelled by (n0, n1, . . . , nN−1),
where ni = 0, 1, . . . , L is the number of particles of class i (i = 0, 1, . . . , N − 1). The
Hamiltonian has an SN symmetry due to its invariance under the permutation of particles
species, which implies that all the energies can be obtained from the sectors (n0, n1, . . . , nN−1),
where n0 � n1 � · · · � nN−1 and n0 + n1 + · · · + nN−1 = L. Moreover, the quantum
SU(N)q symmetry of H implies that all energies in the sector (n′

0, n
′
1, . . . , n

′
N−1) with

n′
0 � n′

1 � · · · � n′
N−1 are degenerate with the energies belonging to the sectors

(n0, n1, . . . , nN−1) with n0 � n1 � · · · � nN−1, if n′
0 � n0 and n′

0 + n′
1 � n0 + n1 and

so on up to n′
0 + n′

1 + · · · + n′
N−2 � n0 + n1 + · · · + nN−2.

The nested Bethe ansatz equations (NBAE) for the SUq(N) Perk–Schultz model (1) are
given by (see, e.g., [3, 11–13])

pk∏
j=1,j �=i

F
(
u

(k)
i , u

(k)
j

) =
pk−1∏
j=1

f
(
u

(k)
i , u

(k−1)
j

) pk+1∏
j=1

f
(
u

(k)
i , u

(k+1)
j

)
(5)

where k = 0, 1, . . . , N − 2 and i = 1, 2, . . . , pk . The integer parameters pk depend on the
particle occupation numbers {ni}:

pk =
k∑

i=0

ni k = 0, 1, . . . , N − 2 p−1 = 0 pN−1 = L (6)

and the functions F(x, y) and f (x, y) are defined by

F(x, y) = cos(2y) − cos(2x − 2η)

cos(2y) − cos(2x + 2η)
f (x, y) = cos(2y) − cos(2x − η)

cos(2y) − cos(2x + η)
. (7)

In the NBAE (5) we have variables of different classes. The number of variables u
(k)

i of
class k is equal to pk and the variables u

(N−1)
i = 0 (i = 1, . . . , L). The whole system of

NBAE consists of subsets of equations labelled by k and containing precisely pk equations
(k = 0, 1, . . . , N − 2).

The eigenenergies of the Hamiltonian (1) in the sector (n0, n1, . . . , nN−1) are given by

E = −
p∑

j=1

(
−q − 1

q
+

sin(uj − η/2)

sin(uj + η/2)
+

sin(uj + η/2)

sin(uj − η/2)

)
(8)

where to simplify the notation p ≡ pN−2 and uj ≡ u
(N−2)
j , j = 1, 2, . . . , p.

All the solutions of NBAE (5) described in this and our previous paper [2] satisfy the
additional ‘free-fermion’ conditions (FFC)

f L(ui, 0) = 1 i = 1, . . . , p. (9)

Consequently from (8) and (9) the corresponding eigenenergies of the Hamiltonian (1) are
given by

E = −2
pN−2∑
j=1

(
−cos η + cos

πkj

L

)
1 � kj � L − 1 (10)

where {kj } is any set of distinct integers in the range 1 � kj � L − 1.
In the derivation of the NBAE (5) it is necessary to find the eigenvalues of an auxiliary

matrix that corresponds to the transfer matrix of an inhomogeneous SUq(N − 1) invariant
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vertex model on the square lattice of width p in the horizontal direction. These eigenvalues
enter the NBAE (see equation (51) from [3])3:

�(N−1)
aux (ui) = f −L(ui, 0)

p∏
j=1,j �=i

F (ui, uj ) i = 1, . . . , p. (11)

We see that the FFC (9) could be explained if there exists a special eigenvalue for this transfer
matrix:

�(N−1)
aux (u) = F−1(u, u)

p∏
j=1

F(u, uj ). (12)

This observation can be formulated in the following conjecture.

Conjecture 1. Let q = exp iπ(N−1)

N
and consider the inhomogeneous SUq(N − 1) invariant

vertex model on the square lattice with p columns, where p = (N − 1) k + r , and
0 � r � N − 2. The inhomogeneity of the model in the horizontal direction is fixed by
the vertical rapidities uj , j = 1, . . . , p. The row-to-row transfer matrix, depending on the
spectral parameter u (horizontal rapidity), has a special factorizable eigenvalue given by
formula (12). The corresponding eigenvector belongs to the sector S = {n0, n1, . . . , nN−2}
where ni = k, i = 0, . . . , r − 1, and ni = k + 1 for i = r, . . . , N − 2.

3. The SU (3) Perk–Schultz model with periodic boundary

The SU(3) Perk–Schultz model [10] is the anisotropic version of the SU(3) Sutherland model
[9], with the Hamiltonian, in a periodic L-site chain, given by

Hq =
L∑

j=1

Hj,j+1 (HL,L+1 ≡ HL,1)

Hi,j = −
1∑

a=0

2∑
b=a+1

(
Eab

i Eba
j + Eba

i Eab
j − qEaa

i Ebb
j − 1/qEbb

i Eaa
j

)
.

(13)

In our previous paper (see [1] for details) it was shown for the periodic model that:

The Hamiltonian (13) with L sites at q = exp(2iπ/3) has eigenvectors (not all of them) with
energy and momentum given by

EI = −
∑
j∈I

(
1 + 2 cos

2πj

L

)
(14)

PI = 2π

L

∑
j∈I

j (15)

with I being a subset of I unequal elements of the set {1, 2, . . . , L}. The number I has to be odd
I = 2k + 1 and the sector of appearance of the above levels is Sk ≡ (k, k + 1, L−2k−1), 0 �
k � (L − 1)/2.

The corresponding solutions of the NBAE were described in [2] and we intend now to
present a procedure that allows us to calculate the related wavefunctions. This procedure is
based on the coordinate Bethe ansatz method and we follow here [14].
3 All details related to the construction of the transfer matrix can be found in [3].
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Due to the conservation of particles the total numbers of particles n0, n1 and n2 =
L − n0 − n1 on classes 0, 1 and 2 are good quantum numbers, and consequently we can split
the associated Hilbert space into block disjoint sectors labelled by the numbers n0 and n1. We
consider the eigenvalue equation

H |n0, n1〉 = E|n0, n1〉 (16)

where

|n0, n1〉 =
∑
{Q}

∑
{x}

f (x1,Q1; . . . ; xn,Qn)|x1,Q1; . . . ; xn,Qn〉 (17)

and n = n0 + n1. Here |x1,Q1; . . . ; xn,Qn〉 means the configuration where a particle of
class Qi (Qi = 0, 1) is at position xi (xi = 1, . . . , L). The summation {Q} = {Q1, . . . ,Qn}
extends over all (0, 1) sequences in which n0 terms are 0 and n1 terms are 1. The summation
{x} = {x1, . . . , xn} extends to n increasing positive integers satisfying 1 � x1 < · · · < xn � L.
Before getting the results for general values of n let us consider initially the simple cases where
we have 1 or 2 particles.

Case 1: n = 1. For one particle on the chain (class 0 or 1), as a consequence of the translational
invariance of (13) it is simple to verify directly that the eigenfunctions are the momentum-k
eigenfunctions

|1, 0〉 =
L∑

x=1

f (x, 0)|x, 0〉 or |0, 1〉 =
L∑

x=1

f (x, 1)|x, 1〉 (18)

with

f (x, 0) = f (x, 1) = eikx k = 2πl

L
l = 0, 1, . . . , L − 1 (19)

and energy given by

E = e(k) ≡ −eik − e−ik + q + 1/q. (20)

Case 2: n = 2. For two particles of classes Q1 and Q2 (Q1,Q2 = 0, 1) on the lattice, the
eigenvalue equation (16) gives us two distinct relations depending on the relative location of
the particles. The first relation comes from the amplitudes where a particle of class Q1 is at
position x1 and a particle Q2 is at position x2, where x2 > x1 + 1. We obtain in this case the
relation

Ef (x1,Q1; x2,Q2) = −f (x1 − 1,Q1; x2,Q2) − f (x1,Q1; x2 + 1,Q2)

− f (x1 + 1,Q1; x2,Q2) − f (x1,Q1; x2 − 1,Q2)

+ 2 (q + 1/q) f (x1,Q1; x2,Q2). (21)

This last equation can be solved promptly by the ansatz

f (x1,Q1; x2,Q2) = eik1x1 eik2x2 (22)

with energy

E = e(k1) + e(k2). (23)

Since this relation is symmetric under the interchange of k1 and k2, we can write a more
general solution of (21) as

f (x1,Q1; x2,Q2) =
∑
P

A
Q1,Q2
P1,P2

ei(kP1 x1+kP2 x2)

= A
Q1,Q2
1,2 ei(k1x1+k2x2) + A

Q1,Q2
2,1 ei(k2x1+k1x2) (24)
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with the same energy as in (23). In the last equation the summation is over the permutations
P = P1, P2 of (1, 2). The second relation comes from the amplitude where x2 = x1 + 1
(matching condition). In this case instead of (21) we have

Ef (x1,Q1; x1 + 1,Q2) = −f (x1 − 1,Q1; x1 + 1,Q2) − f (x1,Q1; x1 + 2,Q2)

− f (x1,Q2; x1 + 1,Q1) + (2q + 1/q)f (x1,Q1; x1 + 1,Q2) Q1 < Q2

Ef (x1,Q1; x1 + 1,Q2) = −f (x1 − 1,Q1; x1 + 1,Q2) − f (x1,Q1; x1 + 2,Q2)
(25)

+ (q + 1/q)f (x1,Q1; x1 + 1,Q2) Q1 = Q2

Ef (x1,Q1; x1 + 1,Q2) = −f (x1 − 1,Q1; x1 + 1,Q2) − f (x1,Q1; x1 + 2,Q2)

− f (x1,Q2; x1 + 1,Q1) + (q + 2/q)f (x1,Q1; x1 + 1,Q2) Q1 > Q2.

Since the ansatz (24) with (23) is also a solution of (21) with x2 = x1 + 1, we obtain from (25)

f (x1,Q1; x1,Q2) + f (x1 + 1,Q1; x1 + 1,Q2)

= (1/q) f (x1,Q1; x1 + 1,Q2) + f (x1,Q2; x1 + 1,Q1) Q1 < Q2

f (x1,Q1; x1,Q2) + f (x1 + 1,Q1; x1 + 1,Q2)
(26)= (q + 1/q)f (x1,Q1; x1 + 1,Q2) Q1 = Q2

f (x1,Q1; x1,Q2) + f (x1 + 1,Q1; x1 + 1,Q2)

= qf (x1,Q1; x1 + 1,Q2) + f (x1,Q2; x1 + 1,Q1) Q1 > Q2.

If we now substitute the ansatz (24) into these equations the constants A
Q1,Q2
1,2 and A

Q1,Q2
2,1 ,

initially arbitrary, should now satisfy∑
P

{(
σP1,P2 + q eikP2

)
A

0,1
P1,P2

− eikP2 A
1,0
P1,P2

} = 0

∑
P

σP1,P2 A
Q,Q
P1,P2

= 0 Q = 1, 2

∑
P

{(
σP1,P2 + q−1 eikP2

)
A

1,0
P1,P2

− eikP2 A
0,1
P1,P2

} = 0

(27)

where

σP1,P2 = 1 + eikP1 +ikP2 − (q + q−1) eikP2 . (28)

The system (27) consists of three equations. The second equation can be easily rewritten as

A
Q,Q
P1,P2

= −σP2,P1

σP1,P2

A
Q,Q
P2,P1

(29)

and combining the first and the third equations we obtain

A
0,1
P1,P2

= − (1 − q eikP2 )(1 − q−1eikP1 )

σP1,P2

A
0,1
P2,P1

+
(eikP1 − eikP2 )

σP1,P2

A
1,0
P2,P1

(30)

A
1,0
P1,P2

= +
(eikP1 − eikP2 )

σP1,P2

A
0,1
P2,P1

− (1 − q eikP1 )(1 − q−1 eikP2 )

σP1,P2

A
1,0
P2,P1

. (31)

Equations (29)–(31) can be written in a compact form

A
Q1,Q2
P1,P2

= −
1∑

Q′
1,Q

′
2=0

S
Q1,Q2

Q′
2,Q

′
1

(
kP1, kP2

)
A

Q′
1,Q

′
2

P2,P1
(Q1,Q2 = 0, 1) (32)
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where we have introduced the S matrix

S
0,0
0,0 (k1, k2) = S

1,1
1,1 (k1, k2) = σ2,1

σ1,2

S
0,1
1,0 (k1, k2) = (1 − q eik2)(1 − q−1 eik1)

σ1,2

S
1,0
0,1 (k1, k2) = (1 − q eik1)(1 − q−1 eik2)

σ1,2

S
0,1
0,1 (k1, k2) = S

1,0
1,0 (k1, k2) = (eik2 − eik1)

σ1,2
.

(33)

Equations (29)–(31) or (32) do not fix the ‘wave numbers’ k1, k2. In general, these numbers
are fixed due to the cyclic boundary conditions:

f (x1,Q1; x2,Q2) = f (x2,Q2; x1 + L,Q1) (34)

which from (24) give us the relations

A
Q1,Q2
P1,P2

= A
Q2,Q1
P2,P1

eikP1 L. (35)

This last equation, when solved by exploiting (32) and (33), gives us the possible values of
k1 and k2, and from (23) the eigenenergies in the sectors containing two particles. Instead of
solving these equations for the particular case n = 2 let us now consider the case of general n.

Case 3: general n. The above calculation can be generalized for arbitrary values of n0 and n1

of the particles of classes 0 and 1, respectively (n0 + n1 = n). The ansatz for the wavefunction
(17) becomes

f (x1,Q1; . . . ; xn,Qn) =
∑
P

A
Q1,...,Qn

P1,...,Pn
ei(kP1 x1+···+kPn xn) (36)

where the sum extends over all permutations P of the integers 1, 2, . . . , n. It is simple
to see that the relations coming from the eigenvalue equation (16) for the components
|x1,Q1; . . . ; xn,Qn〉 where xi+1 − xi > 1 for i = 1, 2, . . . , n are satisfied by the ansatz
(36) with energy

E =
n∑

j=1

e(kj). (37)

On the other hand, if a pair of particles belonging to classes Qi,Qi+1 is located at positions
xi, xi+1, where xi+1 = xi + 1, equation (16) with the ansatz (36) and relation (37) give us the
generalization of relation (32), namely,

A
...,Qi ,Qi+1,...
...,Pi ,Pi+1,...

= −
1∑

Q′
1,Q

′
2=0

S
Qi,Qi+1

Q′
1,Q

′
2

(
kPi

, kPi+1

)
A

...,Q′
2,Q

′
1,...

...,Pi+1,Pi ,...
Qi,Qi+1 = 0, 1 (38)

with S given by (33). Inserting the ansatz (36) in the boundary condition

f (x1,Q1; . . . ; xn,Qn) = f (x2,Q2; . . . ; xn,Qn; x1 + L,Q1) (39)

we obtain the additional relation

A
Q1,...,Qn

P1,...,Pn
= eikP1 LA

Q2,...,Qn,Q1
P2,...,Pn,P1

(40)

which together with (38) should give us the eigenenergies.
Successive applications of (38) give us in general distinct relations between the amplitudes.

They are consistent because as we will see below the S matrix (33) coincides with the famous
6-vertex R matrix and satisfies the Yang–Baxter equation. Hence we may use these relations
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to obtain the eigenenergies of the Hamiltonian (13). Applying relation (38) n times we obtain
from (40) a relation connecting the amplitudes with the same momenta, namely,

A
Q1,...,Qn

P1,...,Pn
= eikP1 LA

Q2,...,Qn,Q1
P2,...,Pn,P1

= (−1)n−1eikP1 L

×
∑

Q′
1,...,Q

′
n

∑
Q′′

1 ,...,Q′′
n

S
Q1,Q

′′
2

Q′
1,Q

′′
1

(
kP1 , kP1

)
S

Q2,Q
′′
3

Q′
2,Q

′′
2

(
kP2, kP1

) · · · (41)

S
Qn−1,Q

′′
n

Q′
n−1,Q

′′
n−1

(
kPn−1 , kP1

)
S

Qn,Q
′′
1

Q′
n,Q

′′
n

(
kPn

, kP1

)
A

Q′
1,...,Q

′
n

P1,...,Pn

where we have introduced the harmless extra sum

1 =
1∑

Q′′
1 ,Q′′

2=0

δQ′′
2 ,Q′

1
δQ′′

1 ,Q1 =
1∑

Q′′
1 ,Q′′

2=0

S
Q1,Q

′′
2

Q′
1,Q

′′
1

(
kP1, kP1

)
. (42)

In order to fix the values of {kj} we should solve (41), i.e., we should find the eigenvalues
�(k) of the matrix

T (k)
{Q}
{Q′} =

1∑
Q′′

1 ,...,Q′′
n=0

{(
n−1∏
l=1

S
Ql ,Q

′′
l+1

Q′
l ,Q

′′
l

(
kPl

, k
))

S
Qn,Q

′′
1

Q′
n,Q

′′
n

(
kPn

, k
)}

(43)

and the Bethe ansatz equations which fix the set {kl} will be given from (41) by

e−ikj L = (−1)n−1�(kj ) j = 1, . . . , n. (44)

We identify T (k) as the transfer matrix of an inhomogeneous 6-vertex model, on a periodic
lattice, with Boltzmann weights S

Q1,Q2

Q′
1,Q

′
2

(
kPl

, k
)

(l = 1, . . . , n). Consequently, in order to
obtain the eigenenergies of the quantum chain (13) we should diagonalize the above transfer
matrix T (k).

It is convenient to introduce the variables {uj } as in the NBAE of section 2:

e−ik = sin(u − π/3)

sin(u + π/3)
. (45)

In terms of these variables the S matrix (33) has a difference form

S
0,0
0,0 (u1 − u2) = S

1,1
1,1 (u1 − u2) = sin(u1 − u2 + π/3)

sin(u2 − u1 + π/3)

S
0,1
1,0 (u1 − u2) =

√
3 ei(u1−u2)

2 sin(u2 − u1 + π/3)

S
1,0
0,1 (u1 − u2) =

√
3 ei(u2−u1)

2 sin(u2 − u1 + π/3)

S
0,1
0,1 (u1 − u2) = S

1,0
1,0 (u1 − u2) = sin(u2 − u1)

sin(u2 − u1 + π/3)
.

(46)

where we should recall that we are considering q = exp(2iπ/3).
Introducing for convenience the new amplitudes

A
Q1,...,Qn

P1,...,Pn
= exp


i

n∑
j=1

δQj ,0 uPj


 Ã

Q1,...,Qn

P1,...,Pn
(47)

we obtain instead of (38) a similar relation with Ã instead of A and with the S̃ matrix of the
symmetric 6-vertex model, whose non-zero components are given by

S̃
0,0
0,0(u) = S̃

1,1
1,1(u) = ρ sin(π/3 − u)

S̃
0,1
0,1(u) = S̃

1,0
1,0(u) = ρ sin u

S̃
0,1
1,0(u) = S̃

1,0
0,1(u) = ρ sin π/3

(48)

where ρ = 1/ sin(π/3 + u).
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The matrix (43) is the transfer matrix of an inhomogeneous 6-vertex model on the square
lattice of width n = n0 + n1. In the next section we show that for the case where n0 = k and
n1 = k + 1 (sector (k, k + 1) of the 6-vertex model on the lattice of width 2k + 1) this transfer
matrix has the special eigenvalue � = 1 independently of the values of the parameters u and
uj (j = 1, . . . , 2n + 1). Consequently, since n = 2k + 1, (44) reduces to

e−ikj L = 1 j = 1, . . . , n (49)

and the associated energies of the quantum chain (13) are free-fermion-like.

4. The special eigenvalue

Applying the Bethe ansatz method to the auxiliary transfer matrix T (k) = T (u) introduced
in (43) one obtains the well-known NBAE [11, 12], which were considered in our paper
[2]. We have shown there that these NBAE are consistent with the FFC (49) for the sectors
(n0, n1, n2) = (k, k + 1, L − 2k − 1). However, it is more convenient here to follow an early
paper of Baxter [15] who considered the most general integrable inhomogeneous 6-vertex
model. Any eigenvalue T (u) of the inhomogeneous model with ρ = 1 in (48) satisfies the
equation

T (u) Q(u) =

 n∏

j=1

sin(π/3 − u + uj )


Q(u − 2π/3) +


 n∏

j=1

sin(u − uj )


Q(u + 2π/3)

(50)

where Q(u) is an auxiliary trigonometric polynomial of degree n0, namely,

Q(u) =
n0∏

j=1

sin(u − αj ). (51)

It is clear from (50) that T (u) is a trigonometric polynomial of degree n and from (48) the
eigenvalues of (43) (where now ρ �= 1) are given by

�(u) = T (u)

/ n∏
j=1

sin(π/3 + u − uj ). (52)

This last expression implies that we have an eigenvalue �(u) = 1 if

T (u) =
n∏

j=1

sin(π/3 + u − uj ). (53)

The existence of this special eigenvalue was argued by Baxter for the more general case of
the 8-vertex model with special values of the crossing parameters [16]. We can prove the
existence of this eigenvalue for lattices with odd values of its width n. In this case we can
rewrite Baxter’s T–Q equation (50) as

f (u) + f (u + 2π/3) + f (u − 2π/3) = 0 (54)

where

f (u) ≡ Q(u + 2π/3)

n∏
j=1

sin(u − uj ). (55)

It is now clear that f (u) is a trigonometric polynomial of degree n + n0. Equation (55)
coincides with (6) in [4], where f (u) is also a trigonometric polynomial.
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In [4] it is shown that for any set of complex numbers uj , j = 1, . . . , 2k + 1, there exists
a trigonometric polynomial Z(u) of degree n on the variable u such that

f (u) ≡ Z(u)

2k+1∏
j=1

sin(u − uj ) (56)

satisfies (54)4. The degree of f is equal to n + n0 = 3k + 1 and the degree of Z is equal to the
degree of Q, so that k = n0. We obtain consequently that the construction of [4] corresponds
to n0 = k and n = n0 +n1 = 2k +1, i.e. n1 = k +1, which completes the proof of the existence
of the special eigenvalue (53) for odd values of n.

5. The special wavefunction of the inhomogeneous 6-vertex model at q2iπ/3

We consider several families of transfer matrices (43) corresponding to each distinct
permutation P = {P1, . . . , Pn}. It follows from (41) that A

Q1,...,Qn

P1,...,Pn
are the 2n components

(Q1, . . . ,Qn = 0, 1) of an eigenvector of the transfer matrix (43). Now we are going to
investigate these components for our special eigenvalue � = 1 using the generalization for an
arbitrary number of particles n, i.e.,∑

P={Pl,Pl+1}

{(
σPl,Pl+1 + q eikPl+1

)
A

...,0,1,...

...,Pl ,Pl+1,...
− eikPl+1 A

...,1,0,...

...,Pl,Pl+1,...

} = 0

∑
P={Pl,Pl+1}

σPl,Pl+1 A
...,Q,Q,...
...,Pl,Pl+1,...

= 0 Q = 1, 2

∑
P={Pl,Pl+1}

{(
σPl,Pl+1 + q−1 eikPl+1

)
A

...,1,0,...

...,Pl,Pl+1,...
− eikPl+1 A

...,0,1,...

...,Pl ,Pl+1,...

} = 0

(57)

where all indices shown by dots are fixed. When we constructed the S matrix in (33) we
expressed A

Q1,Q2
P1,P2

as a linear combination of A
Q1,Q2
P2,P1

and A
Q2,Q1
P2,P1

. Now, on the other hand, we

intend to express A
Q1,Q2
P1,P2

as a linear combination of A
Q2,Q1
P1,P2

and A
Q2,Q1
P2,P1

(Q1 �= Q2). Combining
the first and the third equations of the set (27) we obtain

A
1,0
P1,P2

(eikP2 − eikP1 ) = (1 − q eikP1 )(1 − q−1eikP2 )A
0,1
P1,P2

+ σP2,P1A
0,1
P2,P1

A
0,1
P1,P2

(eikP2 − eikP1 ) = (1 − q−1 eikP1 )(1 − q eikP2 )A
1,0
P1,P2

+ σP2,P1A
1,0
P2,P1

.
(58)

Changing the variables as in (45) these equations are replaced by

A
1,0
P1,P2

sin(uP2 − uP1) =
√

3

2
ei(uP2 −uP1 )A

0,1
P1,P2

+ sin(uP1 − uP2 + π/3)A
0,1
P2,P1

A
0,1
P1,P2

sin(uP2 − uP1) =
√

3

2
ei(uP1 −uP2 )A

1,0
P1,P2

+ sin(uP1 − uP2 + π/3)A
1,0
P2,P1

.

(59)

Generalizing these equations for arbitrary n and considering Ã instead of A (as in (47)) we
obtain

Ã
...,1,0,...
...,Pl ,Pl+1,...

sin
(
uPl+1 − uPl

) =
√

3

2
Ã

...,0,1,...

...,Pl ,Pl+1...
+ sin

(
uPl

− uPl+1 + π/3
)
Ã

...,0,1,...

...,Pl+1,Pl,...
= 0

Ã
...,0,1,...
...,Pl ,Pl+1,...

sin
(
uPl+1 − uPl

) =
√

3

2
Ã

...,1,0,...

...,Pl ,Pl+1,...
+ sin

(
uPl

− uPl+1 + π/3
)
Ã

...,1,0,...

...,Pl+1,Pl ,...
= 0.

(60)

4 Z(u) is the partition function of the inhomogeneous 6-vertex model with domain wall boundary conditions and
with rapidities {u, uj }, j = 1, . . . , 2k + 1.
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We also have a generalization of the second equation in (27)

sin
(
uPl+1 − uPl

+ π/3
)
Ã

...,Q,Q,...

...,Pl ,Pl+1,...
= −sin

(
uPl

− uPl+1 + π/3
)
Ã

...,Q,Q,...

...,Pl+1,Pl,...
(Q = 0, 1).

(61)

Moreover, due to FFC (49) equation (40) leads to the cyclic symmetry

A
Q1,...,Qn

P1,...,Pn
= A

Q2,...,Qn,Q1
P2,...,Pn,P1

(62)

which is also valid for Ã.
Let us begin with the simplest nontrivial case k = 1, where the sector of appearance of

free-fermion levels is (1, 2, L − 3). Equation (17) for the eigenvectors can be written as

|n0, n1〉 = |1, 2〉 =
∑
{Q}

∑
1�x1,x2,x3�L

f (x1,Q1; x2,Q2; x3,Q3)|x1,Q1; x2,Q2; x3,Q3〉 (63)

where we sum over the three sequences of {Q}: {0, 1, 1}, {1, 0, 1} and {1, 1, 0}, which
correspond to the configurations where n0 = 1, n1 = 2 (n = n0 + n1 = 3). The amplitudes
are given by the ansatz (36)

f (x1,Q1; x2,Q2; x3,Q3) =
∑
P

A
Q1,Q2,Q3
P1,P2,P3

ei(kP1 x1+kP2 x2+kP3 x3). (64)

In the above expression there are three types of parameters {A} which are related among
themselves by the cyclic symmetry:

Ã
0,1,1
P1,P2,P3

= Ã
1,1,0
P2,P3,P1

= Ã
1,0,1
P3,P1,P2

. (65)

Before proceeding let us introduce the simplified notation

sP1,P2 = sin
(
uP1 − uP2 + π/3

)
sin(π/3)

dP1,P2 = sin
(
uP1 − uP2

)
sin(π/3)

.

(66)

Relation (61) can be reduced to the equation

sP3,P2 Ã
0,1,1
P1,P2,P3

= −sP2,P3 Ã
0,1,1
P1,P3,P2

(67)

so that due to (65)

Ã
0,1,1
P1,P2,P3

= ±C{P1}sP2,P3 (68)

where the sign depends on the parity of the permutation P = {P1, P2, P3} and C{i}, i = 1, 2, 3,
are unknown coefficients.

Relations (60) give us in particular the equation

Ã
1,0,1
P1,P2,P3

dP2,P1 = Ã
0,1,1
P1,P2,P3

+ sP1,P2Ã
0,1,1
P2,P1,P3

. (69)

Using the cyclic symmetries (65) and (68) we obtain

C{P2}sP3,P1dP2,P1 = C{P1}sP2,P3 − C{P2}sP1,P2sP1,P3 (70)

which together with the identity

sP3,P1dP2,P1 + sP1,P2sP1,P3 = sP2,P3 (71)

gives us C{P2} = C{P2} = C, i.e., up to a normalization factor we have

Ã
0,1,1
P1,P2,P3

= ±sP2,P3 (72)

where the sign depends on the parity of the permutation P.
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Consider further the next sector (2, 3, L − 5), i.e., n0 = 2, n1 = 3 and n = n0 + n1 = 5.
In this case we have two sets of {Ã}, which are related due to the cyclic symmetry, namely,

Ã
0,0,1,1,1
P1,P2,P3,P4,P5

= Ã
0,1,1,1,0
P2,P3,P4,P5,P1

= · · · = Ã
1,0,0,1,1
P5,P1,P2,P3,P4

Ã
0,1,0,1,1
P1,P2,P3,P4,P5

= Ã
1,0,1,1,0
P2,P3,P4,P5,P1

= · · · = Ã
1,0,1,0,1
P5,P1,P2,P3,P4

.
(73)

Let us begin with the first set. Relation (61) is solved by the ansatz

Ã
0,0,1,1,1
P1,P2,P3,P4,P5

= ±C{P1, P2}sP1,P2sP3,P4sP3,P5sP4,P5 (74)

where the sign depends on the parity of the permutation P = {P1, P2, P3, P4, P5} and
C{i, j }, i, j = 1, 2, 3, 4, 5, are symmetric unknown coefficients C{i, j } = C{j, i}. The
system (60) contains in particular the following three equations:

Ã
0,1,0,1,1
P1,P2,P3,P4,P5

dP3,P2 = Ã
0,0,1,1,1
P1,P2,P3,P4,P5

+ sP2,P3A
0,0,1,1,1
P1,P3,P2,P4,P5

Ã
0,1,0,1,1
P2,P1,P3,P4,P5

dP3,P1 = Ã
0,0,1,1,1
P2,P1,P3,P4,P5

+ sP1,P3A
0,0,1,1,1
P2,P3,P1,P4,P5

Ã
1,0,0,1,1
P1,P2,P3,P4,P5

dP2,P1 = Ã
0,1,0,1,1
P1,P2,P3,P4,P5

+ sP1,P2Ã
0,1,0,1,1
P2,P1,P3,P4,P5

.

(75)

Excluding from this system Ã0,1,0,1,1
... , using the cyclic symmetry

Ã
1,0,0,1,1
P1,P2,P3,P4,P5

= Ã
0,0,1,1,1
P2,P3,P4,P5,P1

and limiting ourselves to the unit permutation, we get

Ã
0,0,1,1,1
2,3,4,5,1d2,1d3,2d3,1 = (

Ã
0,0,1,1,1
1,2,3,4,5 + s2,3Ã

0,0,1,1,1
1,3,2,4,5

)
d3,1 +

(
Ã

0,0,1,1,1
2,1,3,4,5 + s1,3Ã

0,0,1,1,1
2,3,1,4,5

)
d3,2s1,2.

(76)

Inserting here the ansatz (74) and using the antisymmetry of di,j , we obtain

C{1, 2}s1,2s3,4s3,5(d2,3s2,1 − d1,3) + C{1, 3}d1,3s1,3s2,3s2,4s2,5

+ C{2, 3}d2,3s2,3(d1,2d1,3s4,1s5,1 − s1,2s1,3s1,4s1,5) = 0. (77)

Using the identity

d2,3s2,1 − d1,3 = −d1,2s2,3 (78)

and removing a common multiplier s2,3 from (77), we obtain the more simple equation

−C{1, 2}d1,2s1,2s3,4s3,5 + C{1, 3}d1,3s1,3s2,4s2,5

+ C{2, 3}d2,3(d1,2d1,3s4,1s5,1 − s1,2s1,3s1,4s1,5) = 0. (79)

By interchanging indices 1 and 2 we obtain a distinct equation. If we now exclude C{1, 2}
from these two equations we get a relation between C{2, 3} and C{1, 3}, namely,

C{2, 3}d2,3(d1,2d1,3s2,1s4,1s5,1 + s1,2s1,4s1,5(s2,3 − s2,1s1,3))

= C{1, 3}d1,3(d1,2d2,3s1,2s4,2s5,2 + s2,1s2,4s2,5(s1,2s2,3 − s1,3)). (80)

This last relation takes a nice form if we use the identities

s2,3 − s2,1s1,3 = d1,2d1,3 s1,2s2,3 − s1,3 = d1,2d2,3 (81)

and remove the common factors d1,2, d1,3 and d2,3, i.e.,

C{2, 3}(s2,1s4,1s5,1 + s1,2s1,4s1,5) = C{1, 3}(s1,2s4,2s5,2 + s2,1s2,4s2,5). (82)

Using standard trigonometric identities one can show that the left-hand combination

s2,1s4,1s5,1 + s1,2s1,4s1,5 = 2
3 {cos(u1 + u2 − u4 − u5)

+ cos(u1 − u2 + u4 − u5) + cos(u1 − u2 − u4 + u5)} (83)
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has an S4 symmetry, and consequently (82) reduces to

C{2, 3} = C{1, 3}. (84)

This means that C does not depend on its indices and we have up to a normalization factor

Ã
0,0,1,1,1
P1,P2,P3,P4,P5

= ±sP1,P2sP3,P4sP3,P5sP4,P5 . (85)

The second set of amplitudes can be found from the first relation in (75). For example,

Ã
0,1,0,1,1
1,2,3,4,5 = d−1

2,3s4,5(s1,3s2,3s2,4s2,5 − s1,2s3,4s3,5)

≡ d−1
2,3s4,5{s2,3s2,5(s1,3s2,4 − s1,2s3,4) + s1,2s3,4(s2,3s2,5 − s3,5)} (86)

and using the identities

s1,3s2,4 − s1,2s3,4 = d2,3s4,1 s2,3s2,5 − s3,5 = d2,3s5,2 (87)

we obtain

Ã
0,1,0,1,1
1,2,3,4,5 = s4,5(s2,3s2,5s4,1 + s1,2s3,4s5,2), (88)

or equivalently by using some additional identities we get

Ã
0,1,0,1,1
1,2,3,4,5 = s4,5(s2,3s2,4s5,1 + s1,2s3,5s4,2). (89)

In a similar way we can derive the general answer

Ã
0,1,0,1,1
P1,P2,P3,P4,P5

/
sP4,P5 = sP2,P3sP2,P5sP4,P1 + sP1,P2sP3,P4sP5,P2

= sP2,P3sP2,P4sP5,P1 + sP1,P2sP3,P5sP4,P2 . (90)

Equations (72) and (85) induce us to conjecture that for an arbitrary n the amplitudes {Ã}
of the special wavefunction of the inhomogeneous 6-vertex model are given by the ansatz

A
0,...,0,1,...,1
P1,...,Pk,Pk+1,...,P2k+1

=
∏

1�i<j�k

sPi ,Pj

∏
k+1�i<j�2k+1

sPi,Pj
(91)

where k and k + 1 are the numbers of particles of species 0 and 1, respectively. We checked
this formula for n = 7 analytically and for n = 9 using a brute-force diagonalization. It is a
challenge to prove the validity of this formula for an arbitrary odd number n. The remaining
amplitudes can be found by using this ansatz and successive application of the ‘recursion’
relation (60). This completes our discussion of the SU(2) periodic case.

6. Summary and conclusions

In previous papers [1, 2] the existence of free-fermion-like energies for the anisotropic SU(N)

Perk–Schultz model with anisotropy parameter q = exp iπ(N − 1)/N was shown. These
solutions were found for general values of N in the case of a free boundary condition, where
the model is SUq(N) invariant, and for the SU(3) case in the periodic case.

In section 2 we have shown that the above observations, for the case of free boundaries,
could be explained by a conjecture stating the existence of a special factorizable eigenvalue
of the auxiliary inhomogeneous transfer matrix of an SUq(N − 1) vertex model with
the same value of the anisotropy. Although we believe that a general derivation of
such a factorizable eigenvalue would be possible we restricted our analytical work to
the simplest case of the periodic SU(3) Perk–Schultz model at q = exp i 2π

3 . In this
case the associated transfer matrix is that of the inhomogeneous 6-vertex model and the
existence of the factorizable eigenvalue, as shown in section 4, follows from the T–Q Baxter
equation (50).
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In section 3 we have reviewed the coordinate Bethe ansatz and shown how to relate
the wavefunction components of the eigenvectors of the SU(3) quantum chain with periodic
boundaries in terms of the components of the eigenvectors of the inhomogeneous 6-vertex
model. In particular, all the free-fermion-like energies are related to a single factorizable
eigenvalue of the inhomogeneous 6-vertex model.

In section 5, exploring the existence of the free-fermion-like solutions of the SU(3)

chain at q = exp i 2π
3 , we have shown how to produce the recurrence relations that allow the

computation of the wave vector amplitudes related to the special factorizable eigenvector of
the 6-vertex model. These relations, although not simple, give us a systematic way to derive
all the eigenfunctions of the free-fermion part of the eigenspectrum of the periodic SU(3)

Perk–Schultz model at q = exp i 2π
3 .

As an application let us consider the free-fermion branch of this last model in the sector
Sk = (k, k + 1, L − 2k − 1). From (14) the corresponding eigenenergies are given by

EI = −
∑
j∈I

(1 + 2 cos(2πj/L))

where I is any subset of (1, 2, . . . , L) with n = 2k + 1 distinct elements. Enumerating these
elements by the index α = 1, 2, . . . , n, the wavefunction is given by

f (x1,Q1; . . . ; xn,Qn) =
∑
P

A
Q1,...,Qn

P1,...,Pn
ei(kP1 x1+···+kPn xn)

where kα = 2πjα/L, α = (1, 2, . . . , n) are the momenta of the elementary free-fermion
excitations.

Let us limit ourselves to the subsets I with elements jα, satisfying the constraint j < m or
L − m < j , where m is a positive integer. Due to conjecture 2 of [2] the lowest eigenenergy
in the sector Sk = (k, k + 1, L − 2k − 1) belongs to this part of spectrum if we choose m > k.

Now we fix k and m with m > k and consider the bulk limit L → ∞. Due to the above-
mentioned constraints for the values of k we have two possibilities: kα → 0 or kα → 2π .
Consequently, from (46) all the parameters uα that fix the auxiliary 6-vertex model become
equal to π/2 and we obtain the homogeneous model with the special eigenvector AQ1,...,Qn

which (up to a sign factor) does not depend on the particular permutation P! The wavefunction
can then be written as

f (y1,Q1; . . . ; yn,Qn) = AQ1,...,Qn

∑
P

(−1)P e2π i(jP1 y1+···+jPn yn) (92)

where we introduced the new coordinates yi = xi/L (i = 1, . . . , n). In particular, this result
shows that in the sectors (k, k + 1,∞) there exist a lot of eigenstates (including the one with
lowest eigenenergy in the sector) whose wavefunction components are given by the product
of Slater determinants and the components of the ground state wavefunction of the XXZ
model with 2k + 1 sites. Let us consider, for example, the sector S2 = (2, 3, L − 5). In
order to obtain the lowest eigenenergy in this sector we chose I = 1, 2; L − 2, L − 1, L. The
Slater determinant in (92) reduces to the Vandermonde determinant and we obtain (up to a
normalization)

f (y1,Q1; . . . ; y5,Q5) =
∏

1�j<k�5

sin π(yj − yk)A
Q1,...,Q5 (93)

where we have

A00111 = A01110 = A11100 = A11001 = A10011 = 1

A01011 = A10110 = A01101 = A11010 = A10101 = 2.
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From these components we see, for example, that the probability of finding 0-particles,
separated by 1-particles, is equal to 2 ∗ 2/(1 ∗ 1 + 2 ∗ 2) = 4/5.

Moreover, it is important to mention that when the inhomogeneity of the auxiliary 6-
vertex model vanishes, the wavefunction that corresponds to the special factorizable eigenvalue
coincides with the ground state wavefunction of the XXZ spin Hamiltonian with anisotropy
� = −1/2. For odd values of lattice sizes the amplitudes of this last ground state wavefunction
show quite interesting combinatorial properties.

Due to the conjecture announced at the end of section 2, we have a generalization of this
special wavefunction to the SU(N − 1) invariant case (q = ei(N−1)π/N). So we suspect that
the ground state function of the SU(N − 1) invariant spin chain can also exhibit interesting
combinatorial properties for the special value q = ei(N−1)π/N . Indeed, using a bruteforce
diagonalization of these quantum invariant chains we have found that the ratio defined by

RL =
(∑

i vi

)2∑
i v2

i

(94)

where {vi} are the wavefunction components of the ground state, has a simple form depending
on the boundary condition and on the parity of the lattice size. For the L-site XXZ spin chain
at � = −1/2 we have RL = √

3
α

[7], where α = L − 1 or α = L depending on whether
the length L of the chain is odd or even, respectively. In the case where L is odd the chain has
a boundary condition periodic or SUq(2) invariant, and for even values of L the chain has a
boundary condition of twisted type or an SUq(2) invariant one. We can present these results
in a compact form:

RL+2/RL = 3 R1 = 1 R2 = 3. (95)

The numerical results coming from brute-force numerical diagonalizations of chains with
SUq(N) symmetry (free boundary condition) followed by a fitting with special irrational
numbers give us the values of RL for the next cases:

• SUq(3) with q = −eiπ/4 (2 � L � 9)

RL+3/RL = (1 +
√

2)3

(96)
R1 = 1 R2 = 1 +

√
2 R3 = (1 +

√
2)3.

• SUq(4) with q = −eiπ/5 (2 � L � 8)

RL+4/RL = (5 + 2
√

5)2

R1 = 1 R2 =
√

5 R3 = 5 + 2
√

5 R4 = (5 + 2
√

5)2.
(97)

• SUq(5) and q = −eiπ/6 (2 � L � 7)

RL+5/RL = (2 +
√

3)5

R1 = 1 R2 = (2 +
√

3)/
√

3 R3 = (2 +
√

3)2/
√

3

R4 = (2 +
√

3)3 R5 = (2 +
√

3)5.

(98)

The numbers RL,L < N , which are necessary for the use of the recursion relations can
be found from the explicit expression of the corresponding wavefunction. Using an approach
described in appendix B of [2] one can show that for L < N

RL =
(

1 + x

1 − x

)L−1 L∏
k=2

1 − xk

1 + xk
x = −q = eiπ/N . (99)
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For the cases where L � N although we cannot prove, our numerical results indicate the nice
recursion relation

RL+N−1 = RN−1 RL. (100)
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